Influence of yeast strain choice on the success of Malolactic fermentation

Nichola Hall Ph.D.
WIneries Unlimited, Richmond VA
March 29th 2012
INTRODUCTION

• Changing conditions dictate different microbial population dynamics
 – e.g. high pH, SO$_2$ addition levels, cleaning and sanitation practices

• Winemaker must manage the microbial populations throughout the process
 – Cold Soak to bottling

• Co-existing *Saccharomyces* and *Oenococcus* populations must be compatible, if not:
 – Ethanolic fermentation issues
 – Malolactic fermentation issues
Saccharomyces cerevisiae

• ~180 enological strains available
 – Genetically different
 • Requirements may differ
 • Results may differ

 – Interactions with other organisms may differ!
 • Yeast: Yeast interactions
 – Positive, Negative or Neutral
 • Yeast: Bacteria interactions
 – Positive, Negative or Neutral
Oenococcus oeni

• ~ 30 enological strains available
 – Strict environmental limitations
 • Alcohol
 • pH
 • FSO₂/TSO₂
 • Temperature
 • Malic acid concentration
 • Nutrient status
POSSIBLE ORGANISM COMBINATIONS

- ~180 enological strains *S. cerevisiae*
- ~30 enological strains *O. oeni*
- 180x30...
 - 5400 possible combinations
 - assuming only 1 yeast and 1 bacteria present
 - Prediction for rate of success?
 - Dependant upon the combination
 - Various outcomes
ALCOHOLIC AND MALOLACTIC FERMENTATIONS

• Malolactic fermentations should not be considered as an afterthought
 – Alcoholic fermentation dictates the success rate!

• Easy ALF=Easy MLF
• Challenging ALF=Difficult MLF
• Planned in conjunction...
Inhibition of *O. oeni* by *S. cerevisiae*

Ethanol production
- Affects the capacity of the bacteria to grow
 - Select strain which is resistant to the Ethanol level

SO₂ production
- Yeast strains classed as high, medium or low producers
 - Production can vary from <20mg/L to >90mg/L
 - Amount depends on the availability of nutrients and the presence of compounds in the must that can bind SO₂
 - Know what levels are present!

Loss of viability can be partially attributed to the inhibition of the ATPase activity
Inhibition of *O. oeni* by *S. cerevisiae*

- Medium Chain Fatty Acids
 - Target and alter the bacterial membrane, interfere with ability to consume Malic Acid, and limit growth

<table>
<thead>
<tr>
<th>Wine</th>
<th>Malic Acid (day 4)</th>
<th>Malic Acid (day 14)</th>
<th>% degradation after 14 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.19</td>
<td>0.53</td>
<td>81</td>
</tr>
<tr>
<td>Wine + C6 145µM</td>
<td>2.24</td>
<td>0.46</td>
<td>84</td>
</tr>
<tr>
<td>Wine + C8 145µM</td>
<td>2.33</td>
<td>0.70</td>
<td>75</td>
</tr>
<tr>
<td>Wine + C10 145 µM</td>
<td>2.46</td>
<td>1.18</td>
<td>58</td>
</tr>
<tr>
<td>Wine + C6 52µM + C8 71µM + C10 µM</td>
<td>2.40</td>
<td>1.45</td>
<td>49</td>
</tr>
</tbody>
</table>
Nitrogen requirements: mg of YAN necessary to consume 1g of sugar
Inhibition of *O. oeni* by *S. cerevisiae*

- Alterations of acidity
 - Utilization of Malic acid, or production of Succinic acid
 - Differential Malic Acid consumption by different strains

- Glutamic Acid deficiency
 - Essential for growth

- Aromatic Compounds
 - \(\beta \)-phenylethanol

- Anti-bacterial metabolites?
Stimulation of *O. oeni* by *S. cerevisiae*

- Yeast autolysis rate
 - Strain dependant
 - Influences the nutritional composition of the medium
 - Releasing amino acids, peptides, mannoproteins
 » Mannoproteins have dual functions
 » Detoxification of medium by absorption
 » Protection of cells from polyphenolic inhibition
Inhibition of *S. cerevisiae* by *O. oeni*

- Production of Acetic Acid
- Glucosidase Production
- Bacterial protease production
- Production of other yeast inhibitors?
BACTERIA: BACTERIA INTERACTIONS

• **L. brevis**
 – Produces Brevicin
 • Small thermostable protein (3kDa)
 • Broad range of action
 – Can inhibit *O. oeni, P. damnosus, L. brevis*

• **L. casei**
 – Produce Caseicin
 • Higher MWt, less stable
 • Inhibits fructose uptake
OVERVIEW

• Wine is the result of complex interactions between organisms

• Yeast strain choice does have an impact on the success rate of MLF

• Interaction is dependant upon:
 – Yeast and bacteria strain present
 – Juice/Must/Wine conditions
 – Winemaking practices
 • E.g. timing of inoculation
Acknowledgements

• Scientific community

• Bruce Zoecklein and managing board of Wineries Unlimited

• Vineyard and Winery Management for sponsoring event
Thank you

QUESTIONS

NICHOLAH@SCOTTLAB.COM